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Effects of competing short- and long-range dispersive interactions on discrete breathers
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The discrete nonlinear Schiimger equation with competing short-range and long-range interactions is
considered in spatial dimensiods=2. This model equation is derived for a situation of two linearly coupled
excitations(independently of dimensignand we analytically and numerically study its properties ih12
dimensions. We analyze theoretically and demonstrate numerically the dependence of the discrete breather
solutions on the amplitude and range of the interactions. We find that complete suppression of the existence
thresholds obtained recently for short-range interactions can be achieved beyond a critical value of the ampli-
tude or of the range of the long-range kernel. For supercritical values of the corresponding parameters,
staggered branches of solutions are obtained both in theory as well as in the numerical experiment.
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[. INTRODUCTION ecule contains charged groups, with long-range Coulomb in-
teraction between them. Thus, the corresponding vibrational
Physical systems with interplay between discreteness, digxcitations besides a short-range coupling between base pairs
persion, and nonlinear interactions are abundant in corl4] also have a long-range dipole-dipole dispersive interac-
densed matter physics. Examples include spin dynamics iion [6]. The excitation transfer in quasi-two-dimensional
magnetic crystal§l], nonlinear charge and excitation trans- molecular crystal$27] and Langmuir-Blodgett-Scheibe ag-
port in solids[2] and biological systemi3—6], electromag- 9regates [28] is due to both short-range quadrupole-
netic energy propagation in superlatti¢@s-10|, and photo- quadrupole and long-range dipole-dipole interactions. De-
nic crystalg 11,12. As a result of this interplay, new types of pPending on molecular orientations these two types of
nonlinear excitations may appear. They are the intrinsicallynteractions can either compete or reinforce each other. Here
localized oscillatory states, which are also termed discreté#e give an example of a system where the dispersion curves
breathergsee, e.g., the review artic[a3]). Herein the term  Of two elementary excitations are close in energy, and effec-
breather specifically refers to intrinsically localized modestive long-range transfer occurs through the coupling between
(ILM's)) which are spatially exponentially localized and tem- the excitations.
porally periodic solutions of the pertinent equations. Further- The paper is organized as follows: in Sec. Il we present
more, for the purposes of this study, we will restrict our- the model independently of spatial dimensionality. In Sec. IlI
selves to standing wave solutions of this type. Intrinsicallywe focus on two spatial dimensions and study the properties
localized states have attracted considerable attention becaudethe model in a quasicontinuum approach. In Sec. IV we
of their ability to focus energy. In this way they offer a novel study the effect of long-range interactions on the discrete
mechanism for energy localization, an important issue irPreather excitation thresholds, and in Sec. V we corroborate

many physical and biophysical procesdd€] and many our results with numerical experiments. Finally, in Sec. VI
fields of materials sciendd5]. we summarize our findings and conclude.
Most attention has been focused on one-dimensional sys-
tems. However, there haye been some studies.of higher- Il. MODEL AND EQUATIONS OF MOTION
dimensional systems. A rigorous proof of the existence of
breathers in higher-dimensional systems was give[i&j. We are concerned here with ILM’s of the discrete nonlin-
Also, intrinsically localized excitations in a two-dimensional ear Schrdinger equation with competing short- and long-
Fermi-Pasta-Ulam mod¢ll7,18, a Klein-Gordon equation range dispersive interactions. Explicitly, we are interested in
model [19-21], and a two-dimensional discrete nonlinear solutions of the following equation:
Schralinger (NLS) model [22—-29 were investigated.
Breathers in a discrete two-dimensional NLS model with dis-
persive dipole-dipole interactions were studied 26)]. i0ua=— CAohat 2 Jnntha— |l s, (1)
The effects of short-range and long-range dispersive inter- m

actions have mostly been investigated separately. By disper- .
sive interaction we mean that the excitation energy acquirewhere ¢; is the complex amplituden=(n,m) (n,m=0,
a wave-vector dependence. However, there are physical sitt1,=2, . . .) is thelattice vector, and, denotes the time
ations where long-range dispersive interations coexist anderivative. The first term in the right-hand si@ds) of Eq.
compete with short-range ones. For example, the DNA mol{1), with A= tn mi1t Yam-1t ¥ns1imt ¥n-1m

— 44, m being the second order difference operator in two

spatial dimensions, represents the short-range dispersive in-

*Permanent address: Bogolyubov Institute for Theoretical Physteraction, the second term represents the long-range disper-

ics, 252 143 Kiev, Ukraine. sive interaction J;; is the matrix element of excitation
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transfer from the site to the sitem), and the third term
gives the nonlinearity of the excitations.

As an example of the physical system whose dynamics is
governed by Eq(l), let us consider a system of two linearly
coupled excitations and b with the excitation wave func- i&tbr*,:wbb,;—JbAzbr;Jrz Lymam- (8
tions a;(t) andb(t), respectively. The Hamiltonian of the m
system is

a5, (1)

idia;=w,a;—J,Aa,+ Z Limbm—Vla;
m

From these equations, through the derivation given in the
Appendix, we obtain Eq(1l) with a long-range kernel;;
given by Eq.(A15) of the Appendix. It can thus be seen that
the dynamics of two linearly coupled excitations, one of
which is linear and another is nonlinear, may be reduced to a
1 single nonlinear Schainger equation with short- and long-

_ -2 a2 .14 range dispersive interactions. The latter describes an interac-
Ha % wala] +‘]a523 a5 5= 2l ZV; lail* 3 tion mediated by the linear excitation. Note that Ef. may
be obtained from the Hamiltonian

H=Ha+Hb+Habv (2)

where

is the Hamiltonian of the excitations, c 1
H=5 2 [ il®+ 2 Janbs = 5 2 [l
né nm n

Ho=2 @plbil®+3p 2 [brs 5 byl @ )
n n,oé
. o o which, together with the number of excitatiorier the
is the Hamiltonian of thdo excitations, and “power”)
Hap= 2, Lam(@5bs+c.c) (5) P=2 |yl (10)
n,é n

is the Hamiltonian of their interaction. In Eq®)—(5) w; is  are conserved quantities.
the frequency of théth (j=a,b) excitation,J; is the matrix

element of the-excitation transfer § is the vector which 1. QUASICONTINUUM APPROACH

connects the nearest neighbors in the lattiseis the non- .

linearity parameter, and;, ;, is the coupling between the two In the quasicontinuum approach, regardimgas a con-
excitations. The matrix elemeht; ;, with n=m describes an  tinuum variable:n—r, ;(t)—¥(r,t), Eq. (1) with J;s
on-site coupling, while in the case£ m it describes an in- given_by Eq.(A15) can be written as a pseudodifferential
tersite coupling of the excitations. As is seen from Hgp-  €guation
(5), we assume that only theetype of excitations are char-

acterized by nonlinearity while theexcitations are linear. It 5 e 2wk oo 2wk V20| f?
is worth noting that the physical systems which can be mod- W= o2 4 o a?—V2 =11y,
eled by a Hamiltonian like Eq92)—(5) are abundant. Ex- (12)

amples include magnon-phonon waves in ferromagnets and

antiferromagnet$29,30 and magnon-libron waves in mo- whereV? is the two-dimensional Laplacian operator aBd

lecular antiferromagne{80,31] [with thea excitations being  «, F are given by Eqs(A10), (A11), (A12). It is seen from

the magnon complex wave amplitude and thexcitations  Eq. (11) that for weak long-range interactions such that

being the phononlibron) wave functior}, exciton-photon

waves(polaritong in semiconductors and molecular crystals Ca*

[27], Fermi-coupled vibrational modes in molecular systems F<Fe= on’

[32,33, and vibrational dynamics in superlattice structures

of alternatinga andb moleculeq34]. Other possibilities in-  the linear part of Eq(11) represents the dispersion with a

clude a coupling between acoustic and optical phonons asositive effective mass. In this case one can expect that the

well as a coupling of interchain and intrachain phononproperties of continuumliké.e., wide nonlinear excitations

modes in nonlinear chains. should be the same as in the case of the usual two-
From the Hamiltonian equation&®)—(5) we obtain the dimensional NLS equation

equation of motion

(12

i0p— V2= y|?y=0. (13)
JH
idas=—F idby=—Fp, (6) It is known for Eq.(13) (see, for example[35]) that the
a, b stable stationary solutions
for the wave functions; andb;; in the form P(r t)=e"Mep(r) (14
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with a real shape functioz’b(F) and a frequency\ to Eq. 1,
(13) exist only for F= sk K U, (24)
PEJ dr|y(r)|?=P,~11.7. (15)  where Eq.(20) was used. It is seen from E4) that the

function ®(|r|) provides a minimum of the function&l9)
For P<P,, the excitations disperse while fét>P,, they  and the stationary solution is stable.
collapse. On the basis of these results, we can immediately In the case oF>F, it is convenient to present E¢L1)
conclude that in the case of competing short- and long-rang# the form
dispersions the critical power for which the stationary solu-

tions to Eq.(11) exist is given by 2mF I §t+V2
o= —¢+— ——=Vu—|ulPy, (29
2mE @ a® a—V
Pcr=11-7< C— —4 . (16)
o

where

For F=F,,, P, vanishes and ILM’s exist for an arbi-
trarily small power(as in the case of the one-dimensional e o2 F 1
NLS equation. The reason for this is as followB=F, is a st— & F_cr T
transition point: in the limit of small gradient¥ /| <1,

Eq. (11) takes the form

(26)

It is seen from Eq(25) that for F>F., one can expect the
existence of staggered continuum-like stationary solutions of

27F
9= LZ(/,JF %V41//—|¢|2<//. (17  theform

o o .
Y(rt)=esrTetg(r). 27

Introducing the ansat¢l4) into this equation we obtain

A= g Sy g (18
2 a2 )

a

IV. EXCITATION THRESHOLDS

It has been recently showWg3,36 for general nonlineari-
ties of exponent 2+ 2 in the nonlinear term of the Hamil-
fonian in Eq.(9) that, when the problem is considereddn
spatial dimensions, there is an excitation threstiglg that
1 1 ) is, for P<Py,, no localized discrete breather solutions can
F= _f [(V2¢)2_ —¢4]dr. (19 be sustained. The appearance of such a threshold occurs for
2 2 o=2/d as argued on the basis of scaling[28] and rigor-
ously proved in36].

In view of this result, in #1 dimensions such thresholds

Equation(18) can be considered as an Euler-Lagrange equ
tion for the rescaled dimensionless functional

The stability of the stationary solutions to Ed.7) may be

B ot 0 a0 DK, NS0 o ot apear fr heuticnoineary bu hey o appes
) 2 i : o in the case of 21 dimensions(the marginal case of the
tion ®(|r]) is a stationary solution of E¢17) and in this  jnequality mentioned aboyeSuch thresholds have been nu-
way provides an extremum of the functiondl It is seen  merically studied if24,25 and will also be relevant to the
from Eq. (19) that numerical results presented in the following section. How-
oT=U (20) ever, they have not been discussed in the presence of com-
’ peting short-range and long-range dispersive interactions.
Hence, in this section we generalize the discussion of Wein-
stein given in[36] to include the presence of a long-range
1 R kernel, which we will symbolize b¥. As there is no reason
T= EJ (V2d)2dr, (21)  for a restriction to the cubic case, we will keep our discus-
sion as general as possible, considering a nonlinearity expo-

where

1 nent 20+2 in the Hamiltonian. Clearly, the case of=1
U= _f dAdr. (22 will be relevant to the cubic nonlinearity numerical results of
4 the following section.
i . Following [36] [in particular Eq.(2.1) of that pape}, the
By using the function Hamiltonian can be rewritten in our case as

¢=Kk®(k|r]), (23)

1
H:_CA s ) — —— 920'+2+ Q,K. -).
where k is a scaling parameter, and introducing it in the (Ao i) o+l % [l (¥n Yin)
functional (19), we get (28)
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The symbolism(,) has been used for an inner product, while ~ °*
for the rest of this section we will suppress the subsaript 04
denotingy= ys; for notational simplicity.

We definel p=inf{H[ ¢]:P[ ¢]= P}, the infimum of the 03
energy functional for a fixed nornh, =0, for norm less than
a threshold power, is needed for an excitation threshold tc
exist as shown if36]. However, the latter is equivalentto |
the inequality <

a+12 [P P<C= Do) + (P K- (29

If we now rescaleg) according to

y=P|lv]|3 (30)

(where the subscript denotes th&norm ofv) the inequality
(29) becomes

FIG. 1. Frequency of the breather solution as a function of its
P - 2% power is shown for various branches of subcritical long-range in-
2 lv] <(o+ 1P 7|[v[|2[C(— Az, v)+(v,K-v)]. teraction amplitudé=. The solid line shows the branch fér=0;
(31) this is the saméstable branch shown in25,26 where only short-
range interactions were considered. The dashed line shows the

Hence, when there exists a constarit such that branch forF=1; the dash-dotted foF =5; the dotted forF=10;
the points forF=50; the plus symbolgnext to last branchfor F
2 |v|2(r+2$C*||v||§U[C(—sz,v)+(v,K~v)], =100; and finally thex symbols(the leftmost branchfor F=162

very close to the critical point. The parameters used are detailed in
(32)  the text. Notice that the upper bran@ibove the turning poihtis

. S . always stable, while the lower is always unstafslee also the rel-
then there exists a threshold powey;,, satisfyingP,"(0 ayant remarks in the textC=0.1, a=3.

+1)=C*, below which, according to theorems 2.1 and 3.1

of [36], no discrete breathers can be present. (i) Since the quantity«(;,K-v,) is positive definite, for
From Eq.(32), small (positive) F (amplitude of the long-range interaction
there will still be an excitation threshold. In fact, the right-
1 g 5, C(— Az, 0)+(v,K-v) hand side of Eq(33) will still be =1/C; (the infimum ob-
— =JZk=inf| [v]l3 = , (33 tained for the case with short-range interactions piaiyd
¢ > |p|2or2 hence, an excitation threshold will be present.

(i) To understand the dependence of the threshold value
on F, we compare the cases of two different valligsF,,
with F,>F;>0. In the case oF,, since the second term in
Ppn=[(o+ 1)Jrrd]1/rr_ (34)  the quotient is positive definite, a smaller norm excitation
(than in the case dF,) is needed to obtain the same value of
Now, notice that using the discrete version of thethe quotient. Hence the threshold for excitation of the intrin-

Sobolev-Nirenberg-GagliardéSNG) estimate by adapting Sic localized modes will be decreased in fact, due to the

and it will then be true that

Eq. (4.17 of [36], we have linear dependence d@?;, on K (in the cubic caseand of
g’j’( on F (in general, the excnauon threshold should be
I v||20’ —Agv.v) i (35) expected to decrease linearly with An alternative way to
2 Dot 2 ~C,’ understand this result is by observing the competing nature
E lv] of the dispersive terms in the context of E41). Similar

considerations in the case B0 yield the prediction of a
where C; is a constant. We can also, however, use thdinear increase irPy,.
Schwarz inequality to bound the second term in the frac-
tional part of Eg.(33) from below. In particular, since V. NUMERICAL RESULTS

20+2 20+2
2] <[lv][2”"%, we have We now turn to a numerical investigation of E@) in
Ilv]|2 2+1 dimensions. In particular, we look for standing wave
(v,K-v)=(vy,K-vq), (36)  solutions of the form of Eq(14). Equation(1) then becomes

E |v|2¢r+2

wherev,=v/||v]||, is a vector of unit norm. Some remarks
are in order. =0. (37)

G(A,¢)=AbiCAbi+F X Ko(alm—n|)dal dalss

m#n
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FIG. 2. Typical profile of behavior on the stablappe) and
unstable(lower) portion of a branch. The results are o= 100. A
typical stable solution is shown in the top left panel far
=0.43,P=0.83. The top right panel shows the results of linear
stability analysis and the real values of indicate stability. The
bottom left panel shows the unstable solution obtained Xer
—0.232,P=0.28 below the turning point. The linear stability 2.l
analysis in the bottom right panel indicates, as emphasized in the

0.6

0.55

0.5

text, the presence of an unstable eigenmdte 0.1, a=3.

We use the methods ¢24] to solve Eq.(37) and the con-
tinuation methods of25] to obtain a branch of solutions.

Once the solution is found, linear stability analysis is per-
formed around the solution. In particular, a solution of the
form 5, =exp(At)(¢pnteuy) is considered and; is ana-
lyzed asu;=v exp(iot)+wexpiw*t), resulting in an ei-
genvalue problem fofw,{v;,w;}}

Solving numerically Eq(37) and the eigenvalue problem
for {w,{vy;,w5}}, we obtain the different branches of Fig. 1.
C is fixed to 0.1. In Fig. 1« is also fixed toa=3 which
should be rescaled by the lattice spadng= \/1/C) in view
of Eq. (37). The rescaling yields an “effective’@.4=3h

04

035
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0251
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0 30

FIG. 3. Dependence of the critical poweg, (top panel and of
the threshold poweP,;, (bottom paneldefined in Secs. Il and IV
of the text, respectively, on the amplituBteof the long-range inter-
action. See the text for a detailed discussion on the linear depen-
dence as well as for the best fits given by the solid lithe indi-

~9.487 which should be used in the equations of the quasividual simulation data points from each branch are marked by

continuum approach of Sec. [I&.g., Eqs(12) and(16)]. We

circles. C=0.1, a=3.

conclude from Fig. 1 that, as the amplitude of the long-range
interaction is increased, the threshold power needed for thdance with Eq(16). In particular, as was noted [i24], this
generation of the excitation is suppressed, as discussed btanch terminates in a tricritical point that coincides with the
Sec. IV. Below the turning point of the branch, unstable so<ritical power for collapse in the continuum casB,
lutions are obtained. This conclusion is in agreement with the=11.7C. At that point all branches degenerate to extended
studies of[24,25 as well as with the theory of37]. The  waves(phonon$. As predicted by Eq(16), the critical point
latter predicts that unstable configurations arise wherf the branch termination is shifted. Hence, since the thresh-
dP/dA <0. The typical instability scenariteee Fig. 2in-  old suppression is slower than the critical power suppression,
volves the bifurcation of a pair of eigenvalues from the con-the unstable branch width decreaseg-&dacreases.
tinuous spectrum and its eventual passing through the origin (i) The dependence @, (for the various branch¢sn
and becoming imaginary. F is shown to be linear in the upper panel of Fig. 3. The best
Comparing the different branches, we arrive at the follow-fit is given by P.,=—0.007% +1.0939 in fair agreement
ing conclusions. with the prediction of 0.0091 for the slope and 1.17 for the
(i) In agreement with the theory of Sec. IV, the thresholdintercept. The discrepancy is accounted (guite clearly in
for the excitation of the discrete breathers is lowered in théhe simulations by boundary effects. Due to the computa-
presence of the long-range interactiomhen F>0), and is  tional cost of two-dimensional numerical calculations, the
eventually completely suppresséske also beloy branches were constructed in small domainsX20 sites,
(ii) The width of the unstable branch decreases, in accorfor which the delocalizationbroadening of the discrete
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pulses occurs at smaller values of the critical power. In fact,
limited calculations in larger domains gave better compari-
son with the theoretical predictiofe., the slope was found N

to be —0.008 and the intercept 1.14 in the latter gase 08

(iv) For the threshold poweP,;,, a linear dependence is O R
also found orf, in agreement with the theory of Sec. IV. The .| ..
dependence oR is given byP,= —0.0035-+0.5701. Thus  _ ;o] ..
P., decreases twice as fast, resulting in the eventual disap ...
pearance of the unstable branch. This dependence is show ,,| ..
in the lower panel of Fig. 3. ol

(v) We also observed the dependence of the same quant _,, | .-
ties (the branches, as well &8, ,P,,) on a. Once again ®
good agreement was found with the theoretical predictions
for the slope of—4.

(vi) Solutions were also constructed for negative values of
F. In particular, it was observed that the branch moves in-
wards in this case, increasing the critical as well as the |,
threshold powers, as was theoretically predicted. The lineal
dependencies oP.,,P;, on F (considered independently osf-
from the ones foF>0), were found to agree very well with
the linear predictions obtained f&r>0. osf- .

It should be remarked here that bistability was not ob-
served in the branches of solutions of the two-dimensional o4f
system in agreement with the findings [#6] also for 2 =)
+1 dimensional discrete systems. This is a feature particulag **[
to the higher(spatially dimensional discrete systems that <
should be contrasted to thetll dimensional ones d6,9].

A last question that we consider separately is what hap-
pens beyond the critical point at which the threshold disap-
pears. The quasicontinuum methodology predi€ts~130
for the parameters considered here. In the numerical compu
tationsF.,~162.5. Once again, the discrepancy between the _;, . s s s s s . . .
two results is due to the role of the boundaries and also the ° 2 ¢ ¢ & o ® w ® %
significant role of the nonlinearity. Notice that the calcula- . .
tions of Sec. Il are valid foP—0 and broad pulses. On the _ FIG. 4. Profile of a staggered solution fBr=225, A =0.028,
contrary, at the beginning of the branBlis of O(1) and the P:0.428_. The upper panel shows the two-dlmen5|_onal p_)roflle of
solutions are very strongly localized, hence nonlinear e]‘fect%e solution, while the lower panel shows a one-dimensional cut
should affect the specific values of where the linear phenomy"0ugh the center of the solution. The staggered nature of the so-
ena should appear but not the phenomenology itself. In facwtlon is clearly observed>=0.1, a=3.
beyond the critical point, A typical example is shown in Fig.

4 for F =225, where the two-dimensional profifeis shown  sjtuations in condensed matter physics, in particular concern-
as well as(lower pane) a one-dimensional cut through the ing coupling of two excitations(such as, for example,
center of the breather profile. It should be noted that in theghonon-magnon, phonon-libron, or exciton-phonon excita-
supercritical cases studied, due to the sparsity of availablgons). This model was demonstrated to be equivalent to a
wave numbers in the finite and small lattices used, the disdiscrete nonlinear Schdinger-type (DNLS) model with
crete breathers were found to lock almost always in the waveéyng-range interactiongnediated by the coupling to the sec-
vectorIZ=(7r,7r). However, as predicted in Sec. lll, stag- ond excitation.

gered solution branches are found beyond the critical point. We analyzed this DNLS equation from a quasicontinuum
It should also be noted that for some of the staggeregerspective in two spatial dimensions, and made predictions
branches, the unstable branch typically present for short@bout the modification of the critical power, beyond which
range interactions can be completely suppressed by the effecollapse is present in the continuum case. On the basis of this

)
A\

0.2 1

of the long-range interactions. analysis, for appropriatésupercritical values of the long-
range kernel amplitude, we predicted staggered excitations.
VI. CONCLUSIONS The same DNLS model with competing short- and long-

range interactions was also theoretically analyzed from a
In this paper we studied the effects of competing shortfully discrete perspective. We used appropriate norm esti-
range and long-range dispersive interactions on intrinsic lomates, following the methodologies [86], to establish the
calized modesor discrete breatherén the presence of non- presence of excitation power thresholds and their depen-
linearity. We developed a specific model relevant todence on the amplitude of the long-range kernel.
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Finally, we complemented these results by numerical exApplying the Fourier transformation in E¢7) and inserting
periments, in which branches efkactstanding wave solu- Eg. (A2) into the obtained equation we get
tions were constructed and their linear stability was ana-
lyzed. We verified the theoretical prediction for the
suppression of the critical and the threshold power, and dem-
onstrated their linear dependence on the amplitude and
power law dependence on the range of the interaction stud-
ied. Furthermore, the predicted staggered solutions for super-
critical values of the long-range amplitude were also ob-
served in the numerical results.

Our results constitute an increased understanding of th&/nere
effects of competitions of different types of dispersive inter-
actions in relevant physical systems and materials. It would 1
clearly be desirable to generalize such considerations to the ¢ _ = " " oy o\ 12 2
case of three-dimensional systems. This challenging task will?= (9= Zlea(k) Top(lo > VLwa(k)= (k) 17+ 4L2(K)}
be left for future studies.

[o- o (lo—o- (O}
o~ wp(K) “

1 © e
=V§ 2 fﬁme'k'"*'“’tlaa<t>|2aa<t>, (A6)

(A7)

are the eigenfrequencies of the linear part of the Hamiltonian
2)—-(5).

Yu. Gaididei is grateful for the hospitality of the Los Ala-  Let us consider the case when>w, andJ,<0 (nega-
mos National Laboratory where this work was performed tive effective mass of thbe excitation, andL ;=L &5, (on-
Work at Los Alamos is performed under the auspices of theite coupling betweea andb excitations. Being interested

U.S. Department of Energy, under Contract No. W-74054n the excitations that belong to the gap interval: (k)
ENG-36. <w<w, (k) and considering, in particular, the excitations
with frequencies close tm+(lz), we obtain instead of Eq.
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APPENDIX: DERIVATION OF EQ. (1) FROM THE

COUPLED EXCITATIONS' MODEL

By applying the Fourier transforms

1 -
bi(t)= 5 2 € "bs(t),

brw)= | e togyat, (A1)

whereN is the number of sites in the lattice, E@) can be
presented in the form

by __t o A2
k(w)—w_wb(lz)ak(w)- (A2)

Here the notation
(k)= w;+J;A(K) (A3)

for the frequency of th¢ excitation (=a,b) is introduced,

A(K)=Y, (1-¢€kd), (A4)
S

is the Fourier transform of the second difference operator
and

Lk =3 ¥z,

n

(A5)

(A6) approximately

(w—wo—CA(E>— )Elz(w)

_ e
a2+ A(K)

where the parameters

Wyt wa— wp)2—2L2
W= a b ( a b) . W,
2 2(wa— wp)
(A9)
oo Ja+Jp . Ja—Jp (wa— wp)2+2L2 |
2 2 (wa—wp)V(wa— wp)*+4L?
(A10)

(wa— wp)2+4L2?
2__
(o) (3a=3p) (A1)

L2

Ja_‘]b

412
27F= 1+

(wa—wp

3/2
2) (A12)

were obtained by using a Padpproximation of degre€l, 1)

with respect toA(K) [38]. Applying the inverse Fourier
transform and using the gauge transform

1

aq(t)= Nwa(t)e*‘wot, (A13)
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we obtain Eq(1) with the matrix element of the long-range 1 elk-(n—m)
dispersive interactiod;;; in the form Ji~2mF J’ _—dk=FKy(a/n—m|),
nm o nm (277_)2 a2+k2 O( | |)
1 elk-(n—m) (A15)
Jim=2mF = > ——— (A14)

N T a2+Ak)
. . . _ whereK(x) is the Bessel function of the second or{igg].
Notice that, up to this point, our presentation has beeRrpe haramete€ given by Eq.(AL0) represents an effective
kep'; as ggnera_l as possible and, in part[cular, IS 'ndependegﬁort-range dispersion, while the parameterand F from
of dimensionality. From* now on we restrict ourselves to tonqS_ (A11) and (A12) give the inverse radius of the long-
spatial dimensions. Fon—m|>1 only small wave numbers range interaction and its intensity, respectively. In the body
|k|<1 contribute significantly to the integréh14) and one  of the paper, the matrix element of the long-range excitation

can obtain that transferJ;;, has been used in the for(A15).
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