
7545

PHYSICAL REVIEW E, VOLUME 64, 066606
Effects of competing short- and long-range dispersive interactions on discrete breathers
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The discrete nonlinear Schro¨dinger equation with competing short-range and long-range interactions is
considered in spatial dimensionsd>2. This model equation is derived for a situation of two linearly coupled
excitations~independently of dimension!, and we analytically and numerically study its properties in 211
dimensions. We analyze theoretically and demonstrate numerically the dependence of the discrete breather
solutions on the amplitude and range of the interactions. We find that complete suppression of the existence
thresholds obtained recently for short-range interactions can be achieved beyond a critical value of the ampli-
tude or of the range of the long-range kernel. For supercritical values of the corresponding parameters,
staggered branches of solutions are obtained both in theory as well as in the numerical experiment.
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I. INTRODUCTION

Physical systems with interplay between discreteness,
persion, and nonlinear interactions are abundant in c
densed matter physics. Examples include spin dynamic
magnetic crystals@1#, nonlinear charge and excitation tran
port in solids@2# and biological systems@3–6#, electromag-
netic energy propagation in superlattices@7–10#, and photo-
nic crystals@11,12#. As a result of this interplay, new types o
nonlinear excitations may appear. They are the intrinsic
localized oscillatory states, which are also termed disc
breathers~see, e.g., the review article@13#!. Herein the term
breather specifically refers to intrinsically localized mod
~ILM’s ! which are spatially exponentially localized and tem
porally periodic solutions of the pertinent equations. Furth
more, for the purposes of this study, we will restrict ou
selves to standing wave solutions of this type. Intrinsica
localized states have attracted considerable attention bec
of their ability to focus energy. In this way they offer a nov
mechanism for energy localization, an important issue
many physical and biophysical processes@14# and many
fields of materials science@15#.

Most attention has been focused on one-dimensional
tems. However, there have been some studies of hig
dimensional systems. A rigorous proof of the existence
breathers in higher-dimensional systems was given in@16#.
Also, intrinsically localized excitations in a two-dimension
Fermi-Pasta-Ulam model@17,18#, a Klein-Gordon equation
model @19–21#, and a two-dimensional discrete nonline
Schrödinger ~NLS! model @22–25# were investigated.
Breathers in a discrete two-dimensional NLS model with d
persive dipole-dipole interactions were studied in@26#.

The effects of short-range and long-range dispersive in
actions have mostly been investigated separately. By dis
sive interaction we mean that the excitation energy acqu
a wave-vector dependence. However, there are physical
ations where long-range dispersive interations coexist
compete with short-range ones. For example, the DNA m
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ecule contains charged groups, with long-range Coulomb
teraction between them. Thus, the corresponding vibratio
excitations besides a short-range coupling between base
@4# also have a long-range dipole-dipole dispersive inter
tion @6#. The excitation transfer in quasi-two-dimension
molecular crystals@27# and Langmuir-Blodgett-Scheibe ag
gregates @28# is due to both short-range quadrupol
quadrupole and long-range dipole-dipole interactions. D
pending on molecular orientations these two types
interactions can either compete or reinforce each other. H
we give an example of a system where the dispersion cu
of two elementary excitations are close in energy, and eff
tive long-range transfer occurs through the coupling betw
the excitations.

The paper is organized as follows: in Sec. II we pres
the model independently of spatial dimensionality. In Sec.
we focus on two spatial dimensions and study the proper
of the model in a quasicontinuum approach. In Sec. IV
study the effect of long-range interactions on the discr
breather excitation thresholds, and in Sec. V we corrobo
our results with numerical experiments. Finally, in Sec.
we summarize our findings and conclude.

II. MODEL AND EQUATIONS OF MOTION

We are concerned here with ILM’s of the discrete nonl
ear Schro¨dinger equation with competing short- and lon
range dispersive interactions. Explicitly, we are interested
solutions of the following equation:

i ] tcnW52CD2cnW1(
mW

JnW mW cmW 2ucnW u2cnW , ~1!

where cnW is the complex amplitude,nW 5(n,m) (n,m50,
61,62, . . . ) is thelattice vector, and] t denotes the time
derivative. The first term in the right-hand side~rhs! of Eq.
~1!, with D2cnW5cn,m111cn,m211cn11,m1cn21,m
24cn,m being the second order difference operator in t
spatial dimensions, represents the short-range dispersiv
teraction, the second term represents the long-range dis
sive interaction (JnW mW is the matrix element of excitation

s-
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transfer from the sitenW to the sitemW ), and the third term
gives the nonlinearity of the excitations.

As an example of the physical system whose dynamic
governed by Eq.~1!, let us consider a system of two linear
coupled excitationsa and b with the excitation wave func-
tions anW(t) and bnW(t), respectively. The Hamiltonian of th
system is

H5Ha1Hb1Hab , ~2!

where

Ha5(
nW

vauanW u21Ja(
nW ,dW

uanW 1dW2anW u22
1

2
V(

nW
uanW u4 ~3!

is the Hamiltonian of thea excitations,

Hb5(
nW

vbubnW u21Jb (
nW ,dW

ubnW 1dW2bnW u2 ~4!

is the Hamiltonian of theb excitations, and

Hab5(
nW ,dW

LnW mW ~amW
* bnW1c.c.! ~5!

is the Hamiltonian of their interaction. In Eqs.~2!–~5! v j is
the frequency of thej th ( j 5a,b) excitation,Jj is the matrix
element of thej-excitation transfer (d is the vector which
connects the nearest neighbors in the lattice!, V is the non-
linearity parameter, andLnW mW is the coupling between the tw
excitations. The matrix elementLnW mW with nW 5mW describes an
on-site coupling, while in the casenW ÞmW it describes an in-
tersite coupling of the excitations. As is seen from Eqs.~2!–
~5!, we assume that only thea-type of excitations are char
acterized by nonlinearity while theb excitations are linear. It
is worth noting that the physical systems which can be m
eled by a Hamiltonian like Eqs.~2!–~5! are abundant. Ex-
amples include magnon-phonon waves in ferromagnets
antiferromagnets@29,30# and magnon-libron waves in mo
lecular antiferromagnets@30,31# @with thea excitations being
the magnon complex wave amplitude and theb excitations
being the phonon~libron! wave function#, exciton-photon
waves~polaritons! in semiconductors and molecular crysta
@27#, Fermi-coupled vibrational modes in molecular syste
@32,33#, and vibrational dynamics in superlattice structur
of alternatinga andb molecules@34#. Other possibilities in-
clude a coupling between acoustic and optical phonons
well as a coupling of interchain and intrachain phon
modes in nonlinear chains.

From the Hamiltonian equations~2!–~5! we obtain the
equation of motion

i ] tanW5
]H

]anW
*

i ] tbnW5
]H

]bnW
*

, ~6!

for the wave functionsanW andbnW in the form
06660
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i ] tanW5vaanW2JaD2anW1(
mW

LnW mW bmW 2VuanW u2 anW , ~7!

i ] tbnW5vbbnW2JbD2bnW1(
mW

LnW mW amW . ~8!

From these equations, through the derivation given in
Appendix, we obtain Eq.~1! with a long-range kernelJmW nW

given by Eq.~A15! of the Appendix. It can thus be seen th
the dynamics of two linearly coupled excitations, one
which is linear and another is nonlinear, may be reduced
single nonlinear Schro¨dinger equation with short- and long
range dispersive interactions. The latter describes an inte
tion mediated by the linear excitation. Note that Eq.~1! may
be obtained from the Hamiltonian

H5
C

2 (
nW dW

ucnW 1dW2cnW u21(
nW mW

JnW mW cnW
* cmW 2

1

2 (
nW

ucnW u4,

~9!

which, together with the number of excitations~or the
‘‘power’’ !

P5(
nW

ucnW u2, ~10!

are conserved quantities.

III. QUASICONTINUUM APPROACH

In the quasicontinuum approach, regardingnW as a con-
tinuum variable:nW→rW, cnW(t)→c(rW,t), Eq. ~1! with JnW mW

given by Eq.~A15! can be written as a pseudodifferenti
equation

i ] tc5
2pF

a2
c2S C2

2pF

a2

1

a22¹2D ¹2c2ucu2c,

~11!

where¹2 is the two-dimensional Laplacian operator andC,
a, F are given by Eqs.~A10!, ~A11!, ~A12!. It is seen from
Eq. ~11! that for weak long-range interactions such that

F,Fcr[
Ca4

2p
, ~12!

the linear part of Eq.~11! represents the dispersion with
positive effective mass. In this case one can expect that
properties of continuumlike~i.e., wide! nonlinear excitations
should be the same as in the case of the usual t
dimensional NLS equation

i ] tc2¹2c2ucu2c50. ~13!

It is known for Eq. ~13! ~see, for example,@35#! that the
stable stationary solutions

c~rW,t !5eiLtf~rW ! ~14!
6-2
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EFFECTS OF COMPETING SHORT- AND LONG-RANGE . . . PHYSICAL REVIEW E 64 066606
with a real shape functionf(rW) and a frequencyL to Eq.
~13! exist only for

P[E drWuc~rW !u25Pcr'11.7. ~15!

For P,Pcr the excitations disperse while forP.Pcr they
collapse. On the basis of these results, we can immedia
conclude that in the case of competing short- and long-ra
dispersions the critical power for which the stationary so
tions to Eq.~11! exist is given by

Pcr511.7S C2
2pF

a4 D . ~16!

For F5Fcr , Pcr vanishes and ILM’s exist for an arbi
trarily small power~as in the case of the one-dimension
NLS equation!. The reason for this is as follows.F5Fcr is a
transition point: in the limit of small gradientsu¹c/cu!1,
Eq. ~11! takes the form

i ] tc5
2pF

a2
c1

C

a2
¹4c2ucu2c. ~17!

Introducing the ansatz~14! into this equation we obtain

2Lf5
2pF

a2
f1

C

a2
¹4f2f3. ~18!

Equation~18! can be considered as an Euler-Lagrange eq
tion for the rescaled dimensionless functional

F5
1

2E H ~¹2f!22
1

2
f4J drW. ~19!

The stability of the stationary solutions to Eq.~17! may be
established in a way similar to that for Derrick’s theore
~see, e.g., the review paper@35#!. We assume that the func
tion F(urWu) is a stationary solution of Eq.~17! and in this
way provides an extremum of the functionalF. It is seen
from Eq. ~19! that

2T5U, ~20!

where

T5
1

2E ~¹2F!2drW, ~21!

U5
1

4E F4drW. ~22!

By using the function

f5kF~kurWu!, ~23!

where k is a scaling parameter, and introducing it in t
functional ~19!, we get
06660
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2
k42k2DU, ~24!

where Eq.~20! was used. It is seen from Eq.~24! that the
function F(urWu) provides a minimum of the functional~19!
and the stationary solution is stable.

In the case ofF.Fcr it is convenient to present Eq.~11!
in the form

i ] tc5
2pF

a2
c1

C

a2

kst
2 1¹2

a22¹2
¹2c2ucu2c, ~25!

where

kst
2 5a2S F

Fcr
21D . ~26!

It is seen from Eq.~25! that for F.Fcr one can expect the
existence of staggered continuum-like stationary solution
the form

c~rW,t !5eikst
W

•rWeiLtf~rW !. ~27!

IV. EXCITATION THRESHOLDS

It has been recently shown@23,36# for general nonlineari-
ties of exponent 2s12 in the nonlinear term of the Hamil
tonian in Eq.~9! that, when the problem is considered ind
spatial dimensions, there is an excitation thresholdPth ; that
is, for P,Pth , no localized discrete breather solutions c
be sustained. The appearance of such a threshold occur
s>2/d as argued on the basis of scaling in@23# and rigor-
ously proved in@36#.

In view of this result, in 111 dimensions such threshold
do not appear for thecubic nonlinearity, but they do appea
in the case of 211 dimensions~the marginal case of the
inequality mentioned above!. Such thresholds have been n
merically studied in@24,25# and will also be relevant to the
numerical results presented in the following section. Ho
ever, they have not been discussed in the presence of c
peting short-range and long-range dispersive interactio
Hence, in this section we generalize the discussion of We
stein given in@36# to include the presence of a long-rang
kernel, which we will symbolize byK . As there is no reason
for a restriction to the cubic case, we will keep our discu
sion as general as possible, considering a nonlinearity ex
nent 2s12 in the Hamiltonian. Clearly, the case ofs51
will be relevant to the cubic nonlinearity numerical results
the following section.

Following @36# @in particular Eq.~2.1! of that paper#, the
Hamiltonian can be rewritten in our case as

H52C~D2cnW ,cnW !2
1

s11 (
nW

ucnW u2s121~cnW ,K•cmW !.

~28!
6-3
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The symbolism~,! has been used for an inner product, wh
for the rest of this section we will suppress the subscripnW ,
denotingc[cnW for notational simplicity.

We defineI P5 inf$H@f#:P@f#5P%, the infimum of the
energy functional for a fixed norm.I n>0, for norm less than
a threshold power, is needed for an excitation threshold
exist as shown in@36#. However, the latter is equivalent t
the inequality

1

s11 ( ucu2s12<C~2D2c,c!1~c,K•c!. ~29!

If we now rescalec according to

c5APuuvuu2
21v ~30!

~where the subscript denotes theL2 norm ofv) the inequality
~29! becomes

( uvu2s12<~s11!P2suuvuu2
2s@C~2D2v,v !1~v,K•v !#.

~31!

Hence, when there exists a constantC!, such that

( uvu2s12<C!uuvuu2
2s@C~2D2v,v !1~v,K•v !#,

~32!

then there exists a threshold powerPth , satisfyingPth
2s(s

11)5C!, below which, according to theorems 2.1 and 3
of @36#, no discrete breathers can be present.

From Eq.~32!,

1

C!
5JC,K

s,d [ infF ivi2
2s

C~2D2v,v !1~v,K•v !

( uvu2s12 G , ~33!

and it will then be true that

Pth5@~s11!JC,K
s,d #1/s. ~34!

Now, notice that using the discrete version of t
Sobolev-Nirenberg-Gagliardo~SNG! estimate by adapting
Eq. ~4.17! of @36#, we have

uuvuu2
2s ~2D2v,v !

( uvu2s12

>
1

C1
, ~35!

where C1 is a constant. We can also, however, use
Schwarz inequality to bound the second term in the fr
tional part of Eq. ~33! from below. In particular, since
(uvu2s12<uuvuu2

2s12, we have

uuvuu2
2s

( uvu2s12

~v,K•v !>~v1 ,K•v1!, ~36!

wherev15v/uuvuu2 is a vector of unit norm. Some remark
are in order.
06660
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~i! Since the quantity (v1 ,K•v1) is positive definite, for
small ~positive! F ~amplitude of the long-range interaction!,
there will still be an excitation threshold. In fact, the righ
hand side of Eq.~33! will still be >1/C1 ~the infimum ob-
tained for the case with short-range interactions only! and
hence, an excitation threshold will be present.

~ii ! To understand the dependence of the threshold va
on F, we compare the cases of two different valuesF1 ,F2,
with F2.F1.0. In the case ofF2, since the second term in
the quotient is positive definite, a smaller norm excitati
~than in the case ofF1) is needed to obtain the same value
the quotient. Hence the threshold for excitation of the intr
sic localized modes will be decreased; in fact, due to
linear dependence ofPth on JC,K

s,d ~in the cubic case! and of
JC,K

s,d on F ~in general!, the excitation threshold should b
expected to decrease linearly withF. An alternative way to
understand this result is by observing the competing na
of the dispersive terms in the context of Eq.~11!. Similar
considerations in the case ofF,0 yield the prediction of a
linear increase inPth .

V. NUMERICAL RESULTS

We now turn to a numerical investigation of Eq.~1! in
211 dimensions. In particular, we look for standing wa
solutions of the form of Eq.~14!. Equation~1! then becomes

G~L,fnW ![LfnWCD2fnW1F (
mW ÞnW

K0~aumW 2nW u!fmW ufnW u2fnW

50. ~37!

FIG. 1. Frequency of the breather solution as a function of
power is shown for various branches of subcritical long-range
teraction amplitudeF. The solid line shows the branch forF50;
this is the same~stable! branch shown in@25,26# where only short-
range interactions were considered. The dashed line shows
branch forF51; the dash-dotted forF55; the dotted forF510;
the points forF550; the plus symbols~next to last branch! for F
5100; and finally thex symbols~the leftmost branch! for F5162
very close to the critical point. The parameters used are detaile
the text. Notice that the upper branch~above the turning point! is
always stable, while the lower is always unstable~see also the rel-
evant remarks in the text!. C50.1, a53.
6-4
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We use the methods of@24# to solve Eq.~37! and the con-
tinuation methods of@25# to obtain a branch of solutions.

Once the solution is found, linear stability analysis is p
formed around the solution. In particular, a solution of t
form cmW 5exp(iLt)(fmW 1eumW ) is considered andunW is ana-
lyzed asunW5vnWexp(2ivt)1wnWexp(iv!t), resulting in an ei-
genvalue problem for̂v,$vnW ,wnW%‰.

Solving numerically Eq.~37! and the eigenvalue problem
for ˆv,$vnW ,wnW%‰, we obtain the different branches of Fig.
C is fixed to 0.1. In Fig. 1,a is also fixed toa53 which
should be rescaled by the lattice spacingh (5A1/C) in view
of Eq. ~37!. The rescaling yields an ‘‘effective’’aeff53h
'9.487 which should be used in the equations of the qu
continuum approach of Sec. III@e.g., Eqs.~12! and~16!#. We
conclude from Fig. 1 that, as the amplitude of the long-ran
interaction is increased, the threshold power needed for
generation of the excitation is suppressed, as discusse
Sec. IV. Below the turning point of the branch, unstable
lutions are obtained. This conclusion is in agreement with
studies of@24,25# as well as with the theory of@37#. The
latter predicts that unstable configurations arise wh
dP/dL,0. The typical instability scenario~see Fig. 2! in-
volves the bifurcation of a pair of eigenvalues from the co
tinuous spectrum and its eventual passing through the or
and becoming imaginary.

Comparing the different branches, we arrive at the follo
ing conclusions.

~i! In agreement with the theory of Sec. IV, the thresho
for the excitation of the discrete breathers is lowered in
presence of the long-range interaction~when F.0), and is
eventually completely suppressed~see also below!.

~ii ! The width of the unstable branch decreases, in ac

FIG. 2. Typical profile of behavior on the stable~upper! and
unstable~lower! portion of a branch. The results are forF5100. A
typical stable solution is shown in the top left panel forL
50.43,P50.83. The top right panel shows the results of line
stability analysis and the real values ofv indicate stability. The
bottom left panel shows the unstable solution obtained forL5
20.232,P50.28 below the turning point. The linear stabilit
analysis in the bottom right panel indicates, as emphasized in
text, the presence of an unstable eigenmode.C50.1, a53.
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dance with Eq.~16!. In particular, as was noted in@24#, this
branch terminates in a tricritical point that coincides with t
critical power for collapse in the continuum case,Pcr
'11.7C. At that point all branches degenerate to extend
waves~phonons!. As predicted by Eq.~16!, the critical point
of the branch termination is shifted. Hence, since the thre
old suppression is slower than the critical power suppress
the unstable branch width decreases asF increases.

~iii ! The dependence ofPcr ~for the various branches! on
F is shown to be linear in the upper panel of Fig. 3. The b
fit is given by Pcr520.0075F11.0939 in fair agreemen
with the prediction of 0.0091 for the slope and 1.17 for t
intercept. The discrepancy is accounted for~quite clearly in
the simulations! by boundary effects. Due to the comput
tional cost of two-dimensional numerical calculations, t
branches were constructed in small domains (20320 sites!,
for which the delocalization~broadening! of the discrete

r

he

FIG. 3. Dependence of the critical powerPcr ~top panel! and of
the threshold powerPth ~bottom panel! defined in Secs. III and IV
of the text, respectively, on the amplitudeF of the long-range inter-
action. See the text for a detailed discussion on the linear de
dence as well as for the best fits given by the solid line~the indi-
vidual simulation data points from each branch are marked
circles!. C50.1, a53.
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pulses occurs at smaller values of the critical power. In fa
limited calculations in larger domains gave better comp
son with the theoretical prediction~i.e., the slope was found
to be20.008 and the intercept 1.14 in the latter case!.

~iv! For the threshold powerPth , a linear dependence i
also found onF, in agreement with the theory of Sec. IV. Th
dependence onF is given byPth520.0035F10.5701. Thus
Pcr decreases twice as fast, resulting in the eventual dis
pearance of the unstable branch. This dependence is sh
in the lower panel of Fig. 3.

~v! We also observed the dependence of the same qu
ties ~the branches, as well asPcr ,Pth) on a. Once again
good agreement was found with the theoretical predicti
for the slope of24.

~vi! Solutions were also constructed for negative values
F. In particular, it was observed that the branch moves
wards in this case, increasing the critical as well as
threshold powers, as was theoretically predicted. The lin
dependencies ofPcr ,Pth on F ~considered independentl
from the ones forF.0), were found to agree very well with
the linear predictions obtained forF.0.

It should be remarked here that bistability was not o
served in the branches of solutions of the two-dimensio
system in agreement with the findings of@26# also for 2
11 dimensional discrete systems. This is a feature partic
to the higher~spatially! dimensional discrete systems th
should be contrasted to the 111 dimensional ones of@6,9#.

A last question that we consider separately is what h
pens beyond the critical point at which the threshold dis
pears. The quasicontinuum methodology predictsFcr'130
for the parameters considered here. In the numerical com
tationsFcr'162.5. Once again, the discrepancy between
two results is due to the role of the boundaries and also
significant role of the nonlinearity. Notice that the calcu
tions of Sec. III are valid forP→0 and broad pulses. On th
contrary, at the beginning of the branchP is of O(1) and the
solutions are very strongly localized, hence nonlinear effe
should affect the specific values of where the linear phen
ena should appear but not the phenomenology itself. In f
beyond the critical point, A typical example is shown in F
4 for F5225, where the two-dimensional profilef is shown
as well as~lower panel! a one-dimensional cut through th
center of the breather profile. It should be noted that in
supercritical cases studied, due to the sparsity of availa
wave numbers in the finite and small lattices used, the
crete breathers were found to lock almost always in the w
vector kW5(p,p). However, as predicted in Sec. III, sta
gered solution branches are found beyond the critical po
It should also be noted that for some of the stagge
branches, the unstable branch typically present for sh
range interactions can be completely suppressed by the e
of the long-range interactions.

VI. CONCLUSIONS

In this paper we studied the effects of competing sho
range and long-range dispersive interactions on intrinsic
calized modes~or discrete breathers! in the presence of non
linearity. We developed a specific model relevant
06660
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situations in condensed matter physics, in particular conc
ing coupling of two excitations~such as, for example
phonon-magnon, phonon-libron, or exciton-phonon exc
tions!. This model was demonstrated to be equivalent t
discrete nonlinear Schro¨dinger-type ~DNLS! model with
long-range interactions~mediated by the coupling to the se
ond excitation!.

We analyzed this DNLS equation from a quasicontinuu
perspective in two spatial dimensions, and made predicti
about the modification of the critical power, beyond whi
collapse is present in the continuum case. On the basis of
analysis, for appropriate~supercritical! values of the long-
range kernel amplitude, we predicted staggered excitatio

The same DNLS model with competing short- and lon
range interactions was also theoretically analyzed from
fully discrete perspective. We used appropriate norm e
mates, following the methodologies of@36#, to establish the
presence of excitation power thresholds and their dep
dence on the amplitude of the long-range kernel.

FIG. 4. Profile of a staggered solution forF5225, L50.028,
P50.428. The upper panel shows the two-dimensional profile
the solution, while the lower panel shows a one-dimensional
through the center of the solution. The staggered nature of the
lution is clearly observed.C50.1, a53.
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Finally, we complemented these results by numerical
periments, in which branches ofexactstanding wave solu-
tions were constructed and their linear stability was a
lyzed. We verified the theoretical prediction for th
suppression of the critical and the threshold power, and d
onstrated their linear dependence on the amplitude
power law dependence on the range of the interaction s
ied. Furthermore, the predicted staggered solutions for su
critical values of the long-range amplitude were also o
served in the numerical results.

Our results constitute an increased understanding of
effects of competitions of different types of dispersive int
actions in relevant physical systems and materials. It wo
clearly be desirable to generalize such considerations to
case of three-dimensional systems. This challenging task
be left for future studies.
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APPENDIX: DERIVATION OF EQ. „1… FROM THE
COUPLED EXCITATIONS’ MODEL

By applying the Fourier transforms

bkW~ t !5
1

N (
nW

eikW•nWbnW~ t !,

b̄nW~v!5E
2`

`

e2 ivtbnW~ t !dt, ~A1!

whereN is the number of sites in the lattice, Eq.~8! can be
presented in the form

b̄kW~v!5
L~kW !

v2vb~kW !
ākW~v!. ~A2!

Here the notation

v j~k!5v j1JjD~kW ! ~A3!

for the frequency of thej excitation (j 5a,b) is introduced,

D~kW !5(
dW

~12eikW•dW !, ~A4!

is the Fourier transform of the second difference operatorD2,
and

L~kW !5(
nW

eikW•nWLnW oW . ~A5!
06660
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Applying the Fourier transformation in Eq.~7! and inserting
Eq. ~A2! into the obtained equation we get

@v2v1~kW !#@v2v2~kW !#

v2vb~kW !
ākW~v!

5V
1

N (
nW
E

2`

`

eikW•nW 2 ivtuanW~ t !u2anW~ t !, ~A6!

where

v6~kW !5
1

2
$va~kW !1vb~kW !6A@va~kW !2vb~kW !#214L2~kW !%

~A7!

are the eigenfrequencies of the linear part of the Hamilton
~2!–~5!.

Let us consider the case whenva.vb andJb,0 ~nega-
tive effective mass of theb excitation!, andLnW mW 5LdnW mW ~on-
site coupling betweena andb excitations!. Being interested
in the excitations that belong to the gap interval:v2(kW )
,v,v1(kW ) and considering, in particular, the excitation
with frequencies close tov1(kW ), we obtain instead of Eq
~A6! approximately

S v2v02CD~kW !2
2pF

a21D~kW !
D ākW~v!

5V
1

N (
nW
E

2`

`

eikW•nW 2 ivtuanW~ t !u2anW~ t !, ~A8!

where the parameters

v05
va1vb

2
1

~va2vb!222L2

2~va2vb!2
A~va2vb!214L2,

~A9!

C5
Ja1Jb

2
1

Ja2Jb

2

~va2vb!212L2

~va2vb!A~va2vb!214L2
,

~A10!

a25
~va2vb!214L2

~va2vb!~Ja2Jb!
, ~A11!

2pF5
L2

Ja2Jb
S 11

4L2

~va2vb!2D 3/2

~A12!

were obtained by using a Pade´ approximation of degree~1,1!
with respect toD(kW ) @38#. Applying the inverse Fourier
transform and using the gauge transform

anW~ t !5
1

AV
cnW~ t !e2 iv0t, ~A13!
6-7
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we obtain Eq.~1! with the matrix element of the long-rang
dispersive interactionJnW mW in the form

JnW mW 52pF
1

N (
kW

eikW•(nW 2mW )

a21D~kW !
. ~A14!

Notice that, up to this point, our presentation has be
kept as general as possible and, in particular, is indepen
of dimensionality. From now on we restrict ourselves to tw
spatial dimensions. ForunW 2mW u@1 only small wave numbers
ukW u!1 contribute significantly to the integral~A14! and one
can obtain that
ns
-

.

e

.

,

.P
ev

B

Le

06660
n
nt

JnW mW '2pF
1

~2p!2E eikW•(nW 2mW )

a21kW2
dkW5FK0~aunW 2mW u!,

~A15!

whereK0(x) is the Bessel function of the second order@39#.
The parameterC given by Eq.~A10! represents an effective
short-range dispersion, while the parametersa and F from
Eqs. ~A11! and ~A12! give the inverse radius of the long
range interaction and its intensity, respectively. In the bo
of the paper, the matrix element of the long-range excitat
transferJnW mW has been used in the form~A15!.
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